The topic of algorithmic fairness has started recieving a lot of attention due to the ability of predictive models to make decisions that might discriminate against certain classes of people. The reasons for this include biased training data, correlated descriptors, black box modeling methods or a combination of all three. Research into algorithmic fairness attempts […]
Competitive Predictive Modeling – How Useful is it?
While at the ACS National Meeting in Philadelphia I attended a talk by David Thompson of Boehringer Ingelheim (BI), where he spoke about a recent competition BI sponsored on Kaggle – a web site that hosts data mining competitions. In this instance, BI provided a dataset that contained only object identifiers and about 1700 numerical […]
Update to the fingerprint Package
I’ve just uploaded a new version of the fingerprint package (v3.3) to CRAN that implements some ideas described in Nisius and Bajorath. First, the balance method generates “balanced code” fingerprints, which given an input fingerprint of N bits, returns a new fingerprint of 2N bits, such that the bit density is exactly 50%. Second, bit.importance […]